The complex number z_1 with modulus r_1 and argument \theta_1 is $$r_1 (\cos \theta_1 + i \sin \theta_1), $$ and similarly for z_2, with modulus and argument r_2 and \theta_2 respectively. Now,
\begin{eqnarray}
z_1\, z_2 & = &
r_1 r_2 (\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 + i2 \sin \theta_1 \sin \theta_2) \\
& = &
r_1 r_2 ([\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2] + i [\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2]) \\
& = &
r_1 r_2( \cos [\theta_1 + \theta_2] + i \sin [\theta_1 + \theta_2]).
\end{eqnarray}
The modulus of this complex number is r_1 r_2 and its argument is \theta_1 + \theta_2. In other words,
\begin{eqnarray} |z_1\, z_2| & = & |z_1| \,|z_2|, \\ \arg (z_1\, z_2)& = & \arg (z_1) + \arg (z_2). \end{eqnarray}
It can also be shown that
\begin{eqnarray} |z_1 / z_2| &=& |z_1| / |z_2|, \\ \arg (z_1 / z_2)& =& \arg (z_1) - \arg (z_2). \end{eqnarray}
So, for example, consider z_1 = 2 (\cos 7\pi/12 + i \sin 7\pi/12) and z_2 = 3 (\cos 2\pi/3 - i \sin 2p3). Now |z_1| = 2 and |z_2| = 3, and therefore |z_1\, z_2| = 6. Also, \arg z_1 = 7\pi/12 and \arg z_2 = -2\pi/3, and therefore \arg (z_1\, z_2) = 7\pi/12 - 8\pi/12 = -\pi/12. It follows that $$z_1 z_2 = 6(\cos \pi/12 - i \sin \pi/12). $$ Similarly, |z_1 / z_2| = 2/3 and \arg (z_1 / z_2) = 7\pi/12 + 8\pi/12 = 15 \pi/12 = 5\pi/4. It follows that $$z_1 / z_2 = 2/3 (\cos 5\pi/4 + i \sin 5\pi/4) $$ ---or at least, it would do, except that by our convention the argument ought to lie between -\pi and \pi, so the above is more conventionally expressed as $$z_1 / z_2 = 2/3 (\cos 3\pi/4 - i \sin 3\pi/4). $$